Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Biosensors (Basel) ; 13(4)2023 Mar 28.
Article En | MEDLINE | ID: mdl-37185506

Magnetic molecularly imprinted polymers (MMIPs) contain the predesigned specialized recognition capability that can be chosen to build credible functional materials, that are easy to handle and have a good degree of specificity. Hence, the given piece of work is intended to design a novel electrochemical sensor incorporating magnetite-based molecularly imprinted polymers. The building materials consisted of a cross-linker (EGDMA), reaction-initiator (AIBN), monomer (methylene succinic acid-MSA), and template molecule (Sunset Yellow-SY dye). MMIPs exhibited a diameter of 57 nm with an irregular shape due to the presence of cavities based on SEM analysis. XRD patterns exhibited crystallinity, as well as amorphous peaks that are attributed to polymeric and non-polymeric frameworks of MMIPs. The crystallite size of the MMIPs from XRD analysis was found to be 16.28 nm based on the Debye-Scherrer's equation. Meanwhile, the FTIR bands showed the synthesis of MMIPs using monomer and methylene succinic acid. The sorption data at the optimized operating conditions (pH 2, sorbent dosage 3 mg, time 18 min) showed the highest sorption capacity of 40 mg/g. The obtained data best fitted to the Langmuir sorption isotherm and followed the pseudo-second-order kinetics. The magneto-sensors were applied for ultrasensitive, rapid, and simple sensing of SY dye. The electrochemical experiments were run at the operating condition range of (scan rate 10-50 mV/s, tads 0-120 s, pH 5-9, potential range 1-1.5 V for CV and 1-1.3 V for SWAdASV). The linear range of detection was set to 1.51 × 10-6 M to 1.51 × 10-6 M posing LOD and LOQ values of 8.6242 × 10-5 M and 0.0002874 M, respectively. The regression analysis value for the calibration was found to be 0.950. Additionally, high adsorption efficiency, selectivity, reusability, and strong structural stability of the magneto-sensors showed potential use for SY detection in real samples. These characteristics make MMIPs a viable electrochemical substrate for the detection of chemical contaminants in the environment and in health-related products.


Molecular Imprinting , Polymers , Polymers/chemistry , Molecularly Imprinted Polymers , Biomimetics , Succinic Acid
2.
Environ Sci Pollut Res Int ; 30(16): 47077-47089, 2023 Apr.
Article En | MEDLINE | ID: mdl-36735126

Mercury emissions from the industrial sector have become an undeniable concern for researchers due to their toxic health effects. Efforts have been made to develop green, efficient, and reliable methods for removal of mercury from wastewater. Sorption process promises fruitful results for the decontamination of cations from wastewater. Among the number of used sorbents, metal sulfides have been emerged as an appropriate material for removing toxic metals that possess good affinity due to sulfur-based active sites for Hg through "Lewis's acid-based soft-soft interactions." Herein, nickel-sulfide nanoparticles were synthesized, followed by their incorporation in chitosan microspheres. FTIR analysis confirmed the synthesis of nickel sulfide-chitosan microspheres (NiS-CMs) displaying sharp bands for multiple functional groups. XRD analysis showed that the NiS-CMs possessed a crystallite size of 42.1 nm. SEM analysis indicated the size of NiS-CMs to be 950.71 µm based on SEM micrographs. The sorption of mercury was performed using the NiS-CMs, and the results were satisfactory, with a sorption capacity of 61 mg/g at the optimized conditions of pH 5.0, 80 ppm concentration, in 60 min at 25 °C. Isothermal models and kinetics studies revealed that the process followed pseudo-second-order kinetics and the Langmuir isothermal model best fitted to experimental data. It was concluded that the NiS-CMs have emerged as the best choice for removing toxic mercury ions with a positive impact on the environment.


Chitosan , Mercury , Water Pollutants, Chemical , Mercury/analysis , Chitosan/chemistry , Nickel/analysis , Microspheres , Wastewater , Decontamination , Cations/analysis , Hazardous Substances/analysis , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
4.
Environ Res ; 215(Pt 3): 113978, 2022 12.
Article En | MEDLINE | ID: mdl-35985490

The existence of heavy metals in ecological systems poses great threats to living organisms due to their toxicant and bio-accumulating properties. Mercury is a known toxicant with notable malignant impacts. It has long been known to cause toxic threats to the health of living organisms since the break out of Minamata disease. The turbulent expulsion of mercury-based pollutants from the industrial sector, requires a proper solution. Many attempts have been made to design a greener and more efficient route for a satisfactory removal of mercury. In the current study, bismuth sulfide nanoparticles (BiSNPs) have been synthesized via the co-precipitation method. The BiSNPs were supported with crosslinked chitosan to enhance their sorption capacity and avoid leaching. The average size of the BiSNPs was 42 nm based on SEM micrographs. The SEM analysis of the bismuth sulfide chitosan-crosslinked beads (BiS-CB) showed that the beads possessed a spherical and smooth morphology with a size of 1.02 mm. The FTIR analysis showed that the beads possessed the characteristics bands of imine groups of chitosan, bismuth, sulfur, and glycosidic linkages present in the molecules. The XRD analysis confirmed the phase crystallinity of the BiS-CB with an average crystallite size of 11 nm. The BiS-CB was employed for the sorption of mercury from water samples. The maximum sorption capacity of 65.51 mg/g was achieved at optimized conditions of pH 5, concentration 80 ppm, in 45 min at 30 °C. The mechanism studied for mercury removal showed that sorption followed the complexation mechanism according to the SHAB concept. In conclusion, the results showed that the BiS-CB sorbent exhibited an excellent sorption capacity to remove mercury.


Chitosan , Environmental Pollutants , Mercury , Metals, Heavy , Nanoparticles , Water Pollutants, Chemical , Adsorption , Bismuth , Chitosan/chemistry , Hydrogen-Ion Concentration , Imines , Kinetics , Mercury/chemistry , Rivers , Sulfides , Sulfur , Water/chemistry , Water Pollutants, Chemical/chemistry
5.
Top Curr Chem (Cham) ; 380(5): 44, 2022 Aug 11.
Article En | MEDLINE | ID: mdl-35951126

Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.


Environmental Restoration and Remediation , Nanostructures , Water Purification , Nanotechnology/methods , Wastewater , Water Purification/methods
6.
Chemosphere ; 305: 135291, 2022 Oct.
Article En | MEDLINE | ID: mdl-35760128

Many environmental pollutants caused by uncontrolled urbanization and rapid industrial growth have provoked serious concerns worldwide. These pollutants, including toxic metals, dyes, pharmaceuticals, pesticides, volatile organic compounds, and petroleum hydrocarbons, unenviably compromise the water quality and manifest a severe menace to aquatic entities and human beings. Therefore, it is of utmost importance to acquaint bio-nanocomposites with the capability to remove and decontaminate this extensive range of emerging pollutants. Recently, considerable emphasis has been devoted to developing low-cost novel materials obtained from natural resources accompanied by minimal toxicity to the environment. One such component is cellulose, naturally the most abundant organic polymer found in nature. Given bio-renewable sources, natural abundance, and impressive nanofibril arrangement, cellulose-reinforced composites are widely engineered and utilized for multiple applications, such as wastewater decontamination, energy storage devices, drug delivery systems, paper and pulp industries, construction industries, and adhesives, etc. Environmental remediation prospective is among the fascinating application of these cellulose-reinforced composites. This review discusses the structural attributes of cellulose, types of cellulose fibrils-based nano-biocomposites, preparatory techniques, and the potential of cellulose-based composites to remediate a diverse array of organic and inorganic pollutants in wastewater.


Environmental Pollutants , Environmental Restoration and Remediation , Water Pollutants, Chemical , Cellulose/chemistry , Humans , Prospective Studies , Wastewater , Water Pollutants, Chemical/chemistry
7.
Environ Res ; 213: 113722, 2022 10.
Article En | MEDLINE | ID: mdl-35728638

Employing dyes in different industrial sectors has produced a serious threat to the environment and living organisms of water bodies and land. For the decontamination of such toxic dyes, efforts have been made to develop an efficient, feasible, and low maintenance processes. In this context, chitosan-zinc selenide (CS-ZnSe) nanoparticles were prepared through chemical reduction method as the efficient photocatalysts for the decontamination of toxic dyes through photocatalysis. Photocatalyst's synthesis was confirmed with the help of FTIR spectroscopy. XRD indicated the hexagonal crystal structure of the CS-ZnSe with a crystallite size of 12 nm. SEM micrographs showed the average nano photocatalyst size as 25 nm. EDX analysis was employed to determine the elemental composition of the CS-ZnSe. An excellent photocatalytic degradation efficiency for tartrazine and sunset yellow dyes was obtained using CS-ZnSe. The results showed a 98% and 97% degradation efficiency for tartrazine dye and sunset yellow (SY) dye at optimized conditions of time (3 h), pH (5), dye concentration (30 ppm), catalyst dosage (0.09 g and 0.01 g) , and at a temperature of 35 °C. Findings of the photocatalytic degradation process fitted well with first-order kinetics for both the dyes. Rate constant, 'K' value was found to be 0.001362 min-1 and 0.001257 min-1 for tartrazine and SY dyes, respectively. While value for (correlation coefficient, R2) was 0.99307 and 0.99277 for tartrazine and sunset yellow dyes, respectively. Recyclability of the photocatalyst was confirmed using it for consecutive cycles to degrade organic dyes. Results showed that the CH-ZnS possesses excellent efficiency in decontaminating organic dyes from industrial wastewater.


Chitosan , Nanoparticles , Azo Compounds/chemistry , Coloring Agents/chemistry , Selenium Compounds , Tartrazine/analysis , Tartrazine/chemistry , Zinc Compounds
8.
Environ Res ; 212(Pt A): 113209, 2022 09.
Article En | MEDLINE | ID: mdl-35378121

Magnetic Molecularly imprinted polymers (MMIPs) have been recently recognized as an exceptional tool for monitoring and decontamination of environmental and biological samples of diverse nature. Based on the potential applications as sorbents and biomimetic sensors, herein, a core-shell magnetic-molecularly imprinted polymer (MMIP) was developed as a selective material for separation and sensing of sunset yellow (SY) dye in an aqueous environment and real samples. The MMIP was synthesized via precipitation polymerization using SY as a template, MAA as a functional monomer (chosen based on simulation studies), EGDMA as a cross-linking agent, and AIBN as an initiator. To elaborate the specificity of MMIP, a comparative agent, magnetic non-imprinted polymer (MNIP) was also synthesized. The XRD results showed that the MMIP showed both crystalline and amorphous structure attributed to the presence and polymeric and non-polymeric groups. The FTIR spectra confirmed synthesis of intermediate and final MMIP product. The SEM results showed spherical morphology and porous structure of the MMIP with an average particle size of 0.636 µm in diameter. The MMIP was first employed as a sorbent for the removal of SY from the aqueous environment. The binding experiments performed at optimized operating conditions (pH 2; time 30 min; sorbent dosage 3 mg; sorbate concentration 80 ppm) showed more selectivity when compared with MNIP. The data fitted best to Langmuir's sorption isotherm (Qo 359.8 mg/g) and followed the pseudo-second-order kinetic model. The synthesized MMIP was also used as an electrochemical sensor for detection of SY dye in the aqueous environment, which exhibited a linear range of detection as (1.51 × 10-6 - 1.5 × 10-3 M). The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.00413 M and 0.0137 M, respectively. While the R2 value was found to be 0.997 at optimized analytical conditions. These results suggested that the synthesized MMIP can be applied for the selective separation and quantification of SY dye in sample of diverse nature.


Molecular Imprinting , Adsorption , Azo Compounds , Magnetic Phenomena , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Polymers/chemistry
9.
Sci Total Environ ; 807(Pt 2): 150856, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-34627923

The rise in living standards and the continuous development in the global economy led to the depletion of resources and increased waste generation per capita. This waste might posture a significant threat to human health or the environmental matrices (water, air, soil) when inadequately treated, transported, stored, or managed/disposed of. Therefore, effective waste management in an economically viable and environmentally friendly way has become meaningful. Prominent technology is the need of the day for circular economy and sustainable development to reduce the speed of depletion in resources and produce an alternative means for the future demands in the different sectors of science and technology. In order to meet the potential requirements for energy production or producing secondary raw material, solid waste may be the prime source. The activities of living organisms convert waste products in one form or another in which electronic waste (e-waste) is a modern-day problem that is growing by leaps and bounds. The disposal protocols of the e-waste management need to be given proper attention to avoid its hazardous impacts. The e-waste is obtained from any equipment or devices that run by electricity or batteries like laptops, palmtops, computers, televisions, mobile phones, digital video discs (DVD), and many more. E-waste is one of the rapidly growing causes of world pollution today. Plenty of research is available in the scientific literature, which shows different approaches being set up and followed to manage and dispose of waste products. These strategies to manage waste products designed by the states all over the globe revolves around minimal production, authentic techniques for the management of waste produced, reuse and recycling, etc. The virtual survey of the available literature on waste management shows that it lacks specificity regarding the management of waste products parallel to ecological sustainability. The presented review covers the sources, potential environmental impacts, and highlights the importance of waste management strategies to provide the latest and updated knowledge. The review also put forward the countermeasures that need to be taken on national and International levels addressing the sensitive issue of waste management.


Hazardous Waste , Waste Management , Humans , Recycling , Soil , Solid Waste
10.
Int J Biol Macromol ; 182: 866-878, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33838191

In this investigation, chitosan-coated nickel selenide nano-photocatalyst (CS-NiSe) was successfully prepared through the chemical reduction method. FTIR spectroscopy confirmed the synthesis of CS-NiSe nano-photocatalyst. Further, XRD analysis exhibited a monoclinic crystalline phase of photocatalyst with a crystallite size of 32 nm based on Scherer's equation. The SEM micrographs showed that the photocatalyst has an average particle size of 60 nm. The bandgap of CS-NiSe was (2.85 eV) in the visible region of the spectrum. Due to this reason, the CS-NiSe was applied under solar light illumination for the photocatalytic activity of Erythrosine and Allura red dyes. The CS-NiSe presented the highest degradation efficiency of 99.53% for Erythrosine dye in optimized experimental conditions of 100 min at 30 °C, 30 ppm concentration, pH 5.0, and 0.14 g catalyst dose. For Allura red dye, a high degradation of 96.12% was attained in 120 min at pH 4.0, 100 ppm initial dye concentration, 35 °C temperature, and 0.1 g catalyst dose. The CS-NiSe showed excellent degradation efficiency and reduced to (95% for Erythrosine and 91% for Allura red dye) after five consecutive batches. Moreover, the statistical and neural network modelling analysis showed the significant influence of all studied variables on dyes degradation performance. The results demonstrated that CS-NiSe exhibited excellent photocatalytic performances for Erythrosine and Allura red dyes and could be a better photocatalyst for removing these dyes from industrial effluents.


Azo Compounds/chemistry , Chitosan/analogs & derivatives , Decontamination/methods , Nanoparticles/chemistry , Nickel/chemistry , Selenium Compounds/chemistry , Erythrosine/chemistry
11.
Chemosphere ; 272: 129605, 2021 Jun.
Article En | MEDLINE | ID: mdl-33482513

From metal-organic chemistry, metal-organic frameworks (MOFs) are of supreme interest for catalysis and environmental settings. Owing to anthropogenic sources and booming industrial practices, the most challenging issue is increased water pollution and environmental insecurity. For instance, several types of synthetic dyes are toxic up to a certain extent, as emerging organic contaminants (EOCs) pose adverse environmental and potential health consequences. A gradual increase in the contamination sources and unpredictable environmental changes in terms of anthropogenic pollution severely affect both water availability and distribution. Therefore, the treatment of dyes containing wastewater matrices for water resource generation is one of the most important tasks, which must be addressed effectively. With structural tunability, MOFs have been appearing as a robust tool for remediating toxic pollutants from wastewater matrices. Moreover, the promising functionality, structural tunability, robust catalytic attributes, compatibility, large surface area, stability in water, and ease in surface functionalization make MOFs one of the considerable materials of interest. This review work spotlights the present-day progress related to MOFs and their catalytic and adsorptive chemistry for a sustainable environment. Following a brief introduction, the characteristic rendering MOFs, as adsorbents, are given with prominent examples. Next, several synthesis routes as a roadmap to engineer MOFs are discussed. From the applied perspective, the adsorptive and catalytic potentialities of MOFs as given by addressing sustainable mitigation of toxic dyes. The last section of the work illustrates key challenging issues and future directions by considering the suiting importance of MOFs.


Environmental Pollutants , Metal-Organic Frameworks , Adsorption , Catalysis , Wastewater
12.
Environ Sci Pollut Res Int ; 28(7): 8074-8087, 2021 Feb.
Article En | MEDLINE | ID: mdl-33048294

Organic dyes that are extensively released in wastewater from various industries remain the priority concern in the modern world. Therefore, a novel catalyst, bismuth-iron selenide, was prepared through the solvothermal process for photocatalytic degradation of a carcinogenic crystal violet dye. The catalyst was supported with chitosan to form iron-bismuth selenide-chitosan microspheres (BISe-CM). The synthesized catalyst was composed of iron, bismuth, and selenium in a definite proportion based on EDX analysis. FTIR analysis confirmed the synthesis of BISe-CM from characteristic bands of metal selenium bond as well as the typical bands of chitosan. SEM analysis illustrated the average diameter of the barren catalyst to be 54.8 nm, while the average size of the microspheres was 982.5 um. The BISe-CM has the surface of a pore with an average size of 0.5 um. XRD analysis revealed that the synthesized catalyst was composed of Fe3Se4 and Bi2Se3. The prepared catalyst showed better degradation efficiency for crystal violet dye at optimized conditions under solar irradiation. Employing 0.2 g of BISe-CM resulted in complete degradation for 30 ppm of crystal violet dye in 150 min at pH 8.0. The reusability of the catalyst up to four consecutive times makes it a more attractive and practical candidate. Moreover, the catalyst followed pseudo-first-order kinetics in the decontamination of crystal violet. Conclusively, the novel photocatalyst showed the best decolorizing property of crystal violet under sunlight irradiation and could be a suitable alternative for dye decontamination from wastewater.


Chitosan , Water Pollutants, Chemical , Catalysis , Gentian Violet , Hydrogen-Ion Concentration , Microspheres , Sunlight
13.
Water Sci Technol ; 81(5): 971-984, 2020 Mar.
Article En | MEDLINE | ID: mdl-32541115

Wastewater containing dyes is considered as the top-priority pollutant when discharged into the environment. Herein, we report for the applicability of 254 nm ultraviolet light and electrochemical process using a titanium ruthenium oxide anode for the degradation of Allura red and erythrosine dyes. During the photolytic process, 95% of Allura red dye (50 ppm) was removed after 1 h at pH 12 and 35 °C, whereas 90% color removal of erythrosine dye (50 ppm) was achieved after 6 h of treatment at pH 6.0 and 30 °C. On the other hand, 99.60% of Allura red dye (200 ppm) was removed within 5 min by the electrochemical process applying a current density (5 mA cm-2) at pH 5.0 and 0.1 mol L-1 sodium chloride (NaCl) electrolytic medium. Similarly, 99.61% of erythrosine dye (50 ppm) degradation was achieved after 10 min at a current density of 8 mA cm-2, pH 6.0, and 0.1 mol L-1 of NaCl electrolyte. The minimum energy consumption value for Allura red and erythrosine dyes (0.196 and 0.941 kWh m-3, respectively) was calculated at optimum current densities of 5 and 8 mA cm-2. The results demonstrated that the electrochemical process is more efficient at removing dyes in a shorter time than the photolytic process since it generates powerful oxidants like the chlorine molecule, hypochlorous acid, and hypochlorite on the surface of the anode and initiates a chain reaction to oxidize the dyes molecules.


Wastewater , Water Pollutants, Chemical , Coloring Agents , Electrodes , Electrolysis , Oxidation-Reduction
14.
Int J Biol Macromol ; 153: 502-512, 2020 Jun 15.
Article En | MEDLINE | ID: mdl-32126200

Herein, chitosan­zinc sulfide nanoparticles (CS-ZnS-NPs) were developed as an efficient photocatalyst for the degradation of toxic dyes. The as-synthesized CS-ZnS-NPs were analyzed using XRD, FTIR, SEM, and EDS. The functional groups of CS-ZnS-NPs were validated with FTIR spectroscopy. The SEM envisaged the average particle size as 40 nm, whereas EDS interpreted the compositional analysis of the nanocomposite. XRD analysis illustrated the crystallinity and hexagonal crystal structure of the CS-ZnS-NPs. The photocatalytic efficiency of CS-ZnS-NPs was evaluated using two carcinogenic azo dyes, Acid Brown 98 and Acid Black 234. A UV lamp (254 nm) was used as an irradiation source during the photocatalytic degradation of dyes. At the optimum conditions, the synthesized CS-ZnS-NPs showed 96.7% degradation for Acid Black 234 in 100 min and 92.6% for Acid Brown 98 in 165 min. The degradation phenomena followed pseudo-first-order kinetics. The values of rate constant (k) were 0.01464 and 0.04096 min-1 with correlation coefficient (R2) of 0.98891 and 0.99406 for Acid Brown 98 and Acid Black 234, respectively. The CS-ZnS-NPs were easily recovered and recycled for four successive batches. The results showed that CS-ZnS-NPs are considered as highly productive, cost-effective and promising photocatalyst in degrading pollutants in several consecutive cycles.


Azo Compounds/chemistry , Chitosan/chemistry , Nanocomposites/chemistry , Photochemical Processes , Sulfides/chemistry , Water Pollutants, Chemical/chemistry , Zinc Compounds/chemistry , Catalysis
15.
Int J Biol Macromol ; 152: 663-671, 2020 Jun 01.
Article En | MEDLINE | ID: mdl-32088221

The latency of toxic cations in the ecosystem poses serious ecological problems due to its bioaccumulation potential and toxicity to living organisms. The effective removal of these wastewater cations releasing from multi-industries is a bottleneck issue. Therefore, an attempt has been made to design a suitable sorbent for cations sorption from the aqueous environment. The chitosan biopolymer was modified with triethylenetetramine to incorporate active sites in the polymeric sequence to boost up its cations sorption capacity. Triethylenetetramine molecule anchoring chitosan (CH-TET) was authenticated through elemental assay, Fourier-transform infrared spectroscopy and 13C NMR in solid-state, scanning electron microscopy and thermal analysis. The sorption of lead (1.94 mmol g-1), copper (2.79 mmol g-1) and nickel (1.53 mmol g-1) was carried out using the functionalized chitosan from aqueous solution, which showed higher sorption capacity for lead and copper than the pristine chitosan in terms of Langmuir sorption isotherm. To scrutinize the mechanism of sorption and energy of interaction between sorbent and sorbate, Langmuir, Temkin, and Freundlich isotherm models were used for sorption study. The Langmuir model showed the best fitting to the results based on lower error function values and a higher correlation coefficient (R2). It can be concluded that the triethylenetetramine-modified chitosan might be considered as an effective sorbent for cations removal from industrial wastewater.


Cations, Divalent/chemistry , Chitosan/chemistry , Nanocomposites/chemistry , Adsorption/drug effects , Copper/chemistry , Decontamination , Ecosystem , Nickel/chemistry , Trientine , Water/chemistry , Water Pollutants, Chemical/chemistry
16.
Molecules ; 25(1)2020 Jan 06.
Article En | MEDLINE | ID: mdl-31935863

Herein, we report the development of chitosan (CH)-based bio-composite modified with acrylonitrile (AN) in the presence of carbon disulfide. The current work aimed to increase the Lewis basic centers on the polymeric backbone using single-step three-components (chitosan, carbon disulfide, and acrylonitrile) reaction. For a said purpose, the thiocarbamate moiety was attached to the pendant functional amine (NH2) of chitosan. Both the pristine CH and modified CH-AN bio-composites were first characterized using numerous analytical and imaging techniques, including 13C-NMR (solid-form), Fourier-transform infrared spectroscopy (FTIR), elemental investigation, thermogravimetric analysis, and scanning electron microscopy (SEM). Finally, the modified bio-composite (CH-AN) was deployed for the decontamination of cations from the aqueous media. The sorption ability of the CH-AN bio-composite was evaluated by applying it to lead and copper-containing aqueous solution. The chitosan-based CH-AN bio-composite exhibited greater sorption capacity for lead (2.54 mmol g-1) and copper (2.02 mmol g-1) than precursor chitosan from aqueous solution based on Langmuir sorption isotherm. The experimental findings fitted better to Langmuir model than Temkin and Freundlich isotherms using linear regression method. Different linearization of Langmuir model showed different error functions and isothermal parameters. The nonlinear regression analysis showed lower values of error functions as compared with linear regression analysis. The chitosan with thiocarbamate group is an outstanding material for the decontamination of toxic elements from the aqueous environment.


Cations/chemistry , Chitosan/chemistry , Decontamination/methods , Thiocarbamates/chemistry , Acrylonitrile/chemistry , Adsorption , Carbon Disulfide/chemistry , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , Water/chemistry
...